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1. Introduction

Consider the following common sample design. A
sample of n units is to be selected from a frame
consisting of M unitsthat is partitioned into H strata, with
M,, unitsin strata h. The units within each stratum are
to be selected with probability proportional to size,
without replacement. Let Ty, h=1..,H, i=1..,M,,
denote the measure of size (MQOS) for unit i in stratum h;

Mhp
let Ty, = ZThi denote the aggregate MOS for stratum h;
i=1

H
and let T=) T, . A common method of allocating the
h=1
sample among the gtrata is proportional to the aggregate
MOS. That is, if n,, denotesthe number of sample units

alocated to stratum h, then

Ny =Nn—2
T

(1.2)
There are two problems associated with (1.1). First,

it does not generally yield an integer-valued allocation,
that is, some form of rounding is required of the
alocations in (1.1). We will not focus on this problem.
The other problem is that we must have
Ny <My, foral h 1.2
However, the allocation given by (1.1) does not

necessarily satisfy (1.2). The standard approach to
handling this problem (Cochran 1977, Sec. 5.8) isto

reallocate n,, = My, for al hfor which n, > M, (1.3)

and then

reallocate the remaining sample to the
remaining strata proportional to Ty, (1.9
However, the new allocation to the remaining strata still
may not satisfy (1.2) for al the strata, in which case this
process of fixing the sample size at M, for all strata for

which n, > M}, and reallocating the remaining sample
to the remaining strata proportional to T, is repeated
until (1.2) is satisfied for all strata.

To illustrate consider Table 1. (In all of the tables,
n=72,and H =10.) For theinitial allocation given in
the fourth column, (1.2) is violated for stratum 1 since
n =4091 and M, =9. Therefore, for the second
alocation we let n; =9 and reallocate the remaining 63
units to the other 9 strata proportional to T,,. (Those
strata whose sample size is fixed a M,, are indicated in
bold.) Since (1.2) isviolated for stratum 2 for the second
allocation, we let n, =10 for the third alocation. For
the fourth allocation, the sample sizes for strata 3, 4, and
5 are additionally fixed at their maximum values. The
fourth allocation is the final unrounded allocation since
(1.2) isthen satisfied for al strata. In the next column we
obtain an integer-valued alocation by rounding up a
sufficient number of the unrounded values with the
largest fractional remainders to preserve the sample total
of 72 and rounding down the remaining values. Thisis
only one of a number of rounding methods discussed in
Balinski and Y oung (1982).

The fina alocation before rounding obtained
through this recursive process is as close as possible to
being proportional to the aggregate MOS given the
congtraints (1.2) in the following sense. There is a
common ratio r=n,/T, for al strata h for which

n, <My, , while

n, /T, <r foral hfor which n, =My, (1.9

In this sense the final alocation is optimal. To illustrate,
(1.5) holds for the final unrounded allocation in Table 1
with r =0.0012. Thefinal valuesof n,, /T, aregivenin
the last column of the table with the values in bold for
those h for which n,, = My, .

Similarly, suppose a lower bound, m,, is placed on
the sample size for each stratum h and it is still desired to
allocate proportional to T, as closely as possible subject

now to the constraints
n, 2my foralh (1.6

Then, if the initial alocation (1.1) does not satisfy (1.6)
but does satisfy (1.2), an analogous recursive algorithm



can be used in which we repeatedly
reallocate n, =my, for al hfor which n, <my, (1.7)

and then use (1.4). If (1.2) holdsfor the initial alocation,
it will also hold for every subsequent alocation in the
recursion, since the allocation is continually being
lowered for all h for which n, >m,,. Hence, thereis no

need to redlocate to satisfy the upper bounds.
Consequently, the recursive algorithm used to satisfy
(1.6) will yield an alocation as close as possible to being
proportional to the aggregate MOS given the constraints
(1.6) in the sense that there will be a common ratio
r=ny, /T, foral stratahfor which n, >m, and

n, /Ty = for al hfor which n, =m; 1.8
This situation isillustrated by Table 2. (Those strata
with sample size fixed at m,, are italicized in the tables

as is the final value of ny,/T,for each such stratum.)

Here three iterations are needed and r =0.00038for the
final allocation.

Next, what if the initial allocation violates (1.2) for
some strata and (1.6) for other strata? It might appear
that, analogously to the previous situations, we would use
a recursive process where at each iteration after the first
we would reallocate to the former set of strata using (1.3)
and the later set of strata using (1.7), and then use (1.4).
However, that algorithm does not yield a final allocation
that generally meets the desired criteria that there is a
common ratio

r=ny, /T, foralhforwhich my<n,<M, (1.9
and that (1.2), (1.5), (1.6), and (1.8) al hold.

To illustrate, consider Table 3. Here for each
iteration we reallocated using (1.3) and (1.7). It required
four iterations to satisfy (1.2) and (1.6). However,
although (1.9) holds for the fina allocation in this table
with r =0.0014 and (1.5) aso holds, (1.8) is violated for
h=357,8.

In Table 4 we present a different approach to the
same example that does satisfy all of the conditions (1.2),
(1.5), (1.6), (1.8), and (1.9). Here in the second iteration
we reallocated using (1.3), that is let n; =9, and then

used (1.4) without applying (1.7) first. In iteration 3 we
repeated this process. However, in iteration 4 we
reallocated using (1.7) but not (1.3). In iteration 5 we
used (1.3) only and finaly in iteration 6, (1.7) only.
Since the allocation given by iteration 6 satisfies (1.2)
and (1.6) we stop. Then for this final alocation (1.9) is
satisfied with r = 0.0011, and (1.5) and (1.8) also hold.
Note in Table 3, which did not work, we applied
both (1.3) and (1.7) for each iteration after the first before

using (1.4), while in Table 4 we applied only one of these
two sets of constraints. However, applying only one of
(1.3), (1.7) for each iteration is only one of the keys to the
solution. In general, we must be careful which one of
(1.3), (1.7) we apply. To illustrate, consider the iterative
alocation in Table 6 for the same example considered in
Tables 3 and 4. Here for iterations 2 and 3 we used only
(1.7) and for iterations 4 and 5 only (1.3). The first three
iterations are identical to those in Table 2 and hence are
omitted. In this table (1.8) is violated for the final
dlocation for strata 3 and 5-9. Even more interesting
would be a slight modification of Table 6 for which M,

is reduced to 17 with no other changes. If iterations 1-5
remain the same, there would now be an iteration 6 for
which nyq is reduced from 18 to 17 and hence the final

alocation would not satisfy

M=

N, =n (1.10)

oy
Il

1

In the next section we demonstrate how a specific
iterative algorithm produces a fina sample and a final
value r that satisfies (1.2), (1.5), (1.6), (1.8) (1.9), and
(2.20). In order for (1.2), (1.6), and (1.10) to be satisfied
simultaneously it is clearly necessary that.

M=

H
m, <N<Y My (111
h=1

>0
Il
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Thisis also sufficient. The general idea of the algorithm
isthat at each iteration either (1.3) or (1.7) is used but not
both. Furthermore, if n, —M}, summed over those h
violating (1.2) is greater than or equa to m,—ny
summed over those h violating (1.6), then (1.3) is used;
otherwise (1.7) is used. More details are provided in the
next section.

The algorithm described was recently applied to the
sample allocation for the integrated National
Compensation Survey program conducted by the Bureau
of Labor Stetistics. Thisapplication is described in detail
in Erngt et a. (2002).

2. TheMain Algorithm

We first introduce some additional notation. For the
most part the notation will follow the notation of the
previous section, with modifications to indicate the
number of theiteration.

Let ny, h=1..,H, denote the number of sample
units allocated to stratum h for iteration k. Let S, s
denote the set of dtrata h for which the sample size has
been fixed to be My,, m, , respectively for iteration k, and
let



R¢ ={L...H} = (S U ) (21)

that is the set of the remaining strata. Note that, in
particular, ny; is the initial, directly proportiona to

aggregate MOS allocation and S, s; are prior to fixing
the sample size of any strata; that is, S;=5=9,
R ={1...,H}. For each k, the stratain R, areto have a
common ratio, denoted 1., for ng,/T,, and
consequently we must have

n—{ > My + thJ

ro— he S he s¢
k = ZTh
he R¢
Np = My if he S,
=my if he s,
=nT,if he R,

2.2)

(2.3)

It now remains to show the following. We first
explain how S, s, are obtained recursively for k=2 in

terms of S, S_1 and Ny, h=1..,H. Thisiskey
to the algorithm since (2.2) and (2.3) are defined in terms
of S, s . Then we establish that there exists a smallest
integer K for which both

Sk =Sk-1+ Sk =Sk-1 (24)

and hence npk = np_gy for al h. Then we first prove
that the set of n,, and r defined by

nh - nhK = nh(K_l)' h:l,...,H, and r= rK = rK_l (25)

satisfy (1.2) and (1.6); next that this set of n,, satisfies
(1.10); and finaly that the ny, and r satisfy (1.5), (1.8)
and (1.9).

Torecursively define S, s for k=2, let

D= >, max{npiy —Mp, 0, (2.6)
heR¢-1
da= > max{my —Npyy, O 2.7
he R¢—1
Sk =S V{hingpgegy > Mp}tif Dyy 2dy 4 28)
=S if Dyg <dy
S, =S,_1 U{h:nyp_y <mp}if dp_y > Dy _
k = Sk-1 V{NiNpgegy <mp}if dyy > Dy 29)

=81 if dy g <Dyy

The calculations of (2.6), (2.7) for the example of

Table 4 are given in Table 5. To illustrate its use, since
D; >d; we have by (2.8), (2.9) that S, ={1}, s, =0,
from which, by (2.2), (2.3), the second iteration in Table
4 is obtained. This is equivalent to applying (1.3), (1.4)
to theinitial allocation.

To establish that there exists an integer K for which

(2.4) holds, observe that S, o S;_4, S D Sk_1 for each
k> 2, and consequently R, c R._; by (2.1). It follows
fromthis last relation and the fact that R, ={1....,H} , that
either R, =R._; for some k=1...H+1 or dse
Ryo =Ry =9. Consequently, there is a smallest
integer K <H +2 suchthat R = R¢_; and (2.4) holds

for thisK.
It follows from (2.2)-(2.4), (2.6)-(2.9) that the set of

n,, h=1..,H, defined by (2.5) satisfies (1.2), (1.6).

To show that this set of ny, satisfies (1.10), observe
that unless Ry_; =@, (1.10) is satisfied by (2.2), (2.3)
with k =K -1, and (2.4), (2.5). However, we will show
that R¢_; =< by proving that

Nik—2)h <My, for some he R¢_, (2.10

and
N(k-2)h = My, for some he R¢_, (2.112)

since (2.10), (2.11) combined with (2.1), (2.6)-(2.9)
establishes that Ry_; #<. This is because if there is
some h satisfying both (2.10), (2.11), then he Ry _; for
this h; while if there is a pair of strata, one satisfying
(2.10) and the other (2.11), then one of these strata must
bein R¢_; by (2.1), (2.6)-(2.9).

We will establish (2.10) by proving that for
k=2..,K-2

heRe—1 heRc—1 he R¢ he R¢

Then since by (1.11) it follows that

n= Znhlﬁ ZMh

he Ry he Ry

(2.13)

we combine (2.12), (2.13) to obtain by induction that

Znhks ZMh’ k:l,...,K—Z (214)

he Ry he R¢

and hence that (2.10) holds since Rx_, #& . The proof

that (2.11) holds, which is omitted, is analogous.
To edtablish (2.12) we consider two cases, first
Sy # Sy and then s, # s, . Intheformer caseit can



be shown that

D Nhk = . Nnek-1) + Dis

he he
R R (2.15)
= DMy — My < DMy
heR(k-1) he(Rk-1-R«) heR
and in the latter case that
Znhk = z Mk-1) — A1
R R (2.16)

< ZMh+Dk—l_dk—lS ZMh
he R he R¢

and hence (2.12) holds in both cases. Observe that the
first relation of the chain (2.15) follows from (2.1)-(2.3),
(2.6)-(2.9); the second from (2.1), (2.6)-(2.9); and the last
relation from the hypothesis of (2.12). The first relation
of (2.16) follows from (2.1)-(2.3), (2.6)-(2.9); the second
from (2.1), (2.6)-(2.9); and the last relation from (2.9).

Finally, we will show that n,, h=1..H, and r
defined by (2.5) satisfies (1.5), (1.8), (1.9) by proving
that foral k=2,...,K,

if Ny <T;Th fordl he Sj, j=1...,k-1,
thenn,, <n T, foradl he S (2.17)
if ny 2r;T, foral hes;, j=1..,k-1,
then ny 21 T, fordl he s, (2.18)

Snce S, =5 =0, it is vacuously true that
Ny < Ty fordl he S, Ny 2 T, fordl hes;.

Consequently, once (2.17), (2.18) are established, it
follows by induction that

Nk <k Th
Nk =k Th

for dl he Sy
forall he sy

(2.19)
(2.20)

Finaly, (2.3), (2.5), (2.19), (2.20) establish (1.5), (1.8),
(1.9).

Thus we need only establish (2.17), (2.18). We will
only prove (2.17) since the proof of (2.18) issimilar. To
show (2.17) we let g denote the largest integer satisfying

g<k and Sy; # S (2.21)

If there is no g satisfying (2.21) then S, =S, =& and
(2.17) isvacuoudly true. We will otherwise prove that

N =r .
’ (222)

g-1

which establishes (2.17) sinceif he Sy_; then

nhk = nh(g—l) < rg_lTh < I’kTh (223)
Wh”e'f hE Sk - Sg—l = Sg - Sg—l C Rg—l then
nhk = nhg = Mh S nh(g_l) = I’g_lTh S I’kTh (224)

Note that the first relation in the chain (2.23) follows
from (2.3) and Sy_; = S, and the second relation by the

hypothesis of (2.17). The first two relations of (2.24)
follow from (2.3) and S =S;, and the third relation

from (2.8). The fourth relation of (2.24) follows from
(23)and he Ry_; .

To establish (2.22) we need only show that

2Nk = 2 Nhg =Dg 1+ D NMiygog
heRy heRy heRy

(2.25)
2dg 1+ 2 Mg
heRg
and
> (M =Nhga) = D (My = Npgg)
"=FaF "R (2.26)

< Z maX{ mh — nh(g_l) , O} = dg—l
heRy—1

sinceit follows from (2.3), (2.25), (2.26), that

e 2 Th= DN D Mg =fg-1 2T (227)

he Rg he Ry he Ry he Ry

To obtain (2.25) note that the first relation in (2.25)
holds by combining

(2.28)

H H
Znhk =Z Npg =N
h=1

h=1

which follows from (2.2), (2.3), with the fact that
Ny =hpg for al he Ry, which follows from (2.3),

(2.8), (2.9). The second relation follows from (2.1)-(2.3),
(2.6)-(2.9), (2.21). The final relation follows since
Dy-12dg4 by (2.8), (2.22).

To obtain (2.26), note that the first relation follows
from (2.3) and the fact that Ry — Ry < s by (2.21); the

second relation from Ry - R cRy_;; and the final
relation from (2.7).
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Table 1. Example of Allocation with Constraints on Maximum Sample Szes

Stratum T, M, Iteration Integer n,, /T,
1 2 3 4 aloc.

1 85000 9 40091 9 9 9 9 0.0001

2 19000 10 914 1853 10 10 10 0.0005

3 9700 11 467 946 11.27 11 11 0.0011

4 6700 7 322 653 779 7 7 0.0010

5 3900 4 188 380 453 4 4 0.0010

6 2500 19 120 244 291 3.06 3 0.0012

7 2300 8 111 224 267 282 3 0.0012

8 5200 10 250 507 6.04 637 6 0.0012

9 8800 15 424 858 10.23 10.78 11 0.0012

10 6500 20 313 634 755 7.96 8 0.0012

Total 149600 113 72 72 72 72 72

Table 2. Example of Allocation with Constraints on Minimum Sample Szes

Stratum T, M, my, Iteration Integer  n, /T,
1 2 3 aloc.
1 85000 100 1 4091 3238 3191 32 0.00038
2 19000 100 1 914 724 713 7 0.00038
3 9700 100 7 467 7 7 7 0.00072
4 6700 100 1 322 255 252 3 0.00038
5 3900 100 2 188 2 2 2 0.00051
6 2500 100 6 120 6 6 6 0.00240
7 2300 100 3 111 3 3 3 0.00130
8 5200 100 6 250 6 6 6 0.00115
9 8800 100 4 424 335 4 4 0.00045
10 6500 100 1 313 248 244 2 0.00038
Total 149600 1000 32 72 72 72 72
Table 3. Nonoptimal Allocation for Examplewith Both Sets of Constraints
Stratum T, M my, Iteration Integer n, /T,
1 2 3 4 alloc.
1 85000 9 1 4091 9 9 9 9 0.0001
2 19000 10 1 914 1807 10 10 10 0.0005
3 9700 11 7 467 7 7 7 7 0.0007
4 6700 7 1 322 637 883 7 7 0.0010
5 3900 4 2 188 2 2 2 2 0.0005
6 2500 19 6 120 6 6 6 6 0.0024
7 2300 8 3 111 3 3 3 3 0.0013
8 5200 10 6 250 6 6 6 6 0.0012
9 8800 15 4 424 837 1160 12.65 13 0.0014
10 6500 20 1 313 618 857 935 9 0.0014
Total 149600 113 32 72 72 72 72 72




Table 4. Optimal Allocation for Example of Table 3

Stratum T, M, m, [teration Integer n, /T,
1 2 3 4 5 6 aloc.

1 85000 9 1 40091 9 9 9 9 9 9 0.0001

2 19000 10 1 914 1853 10 10 10 10 10 0.0005

3 9700 11 7 467 946 1127 1046 1060 10.48 10 0.0011

4 6700 7 1 322 658 779 723 7 7 7 0.0010

5 3900 4 2 18 380 453 421 4 4 4 0.0010

6 2500 19 6 120 244 291 6 6 6 6 0.0024

7 2300 8 3 111 224 267 3 3 3 3 0.0013

8 5200 10 6 25 507 604 561 568 6 6 0.0012

9 8800 15 4 424 858 1023 949 962 950 10 0.0011

10 6500 20 1 3183 634 75 701 710 7.02 7 0.0011

Total 149600 113 32 72 72 72 72 72 72 72

Table 5. Contribution of Each Sratumto Value of D, ,d, for Example of Table 4

Stratum Dy d Dy d; D3 d3 Dy dy Dg ds
1 3191 0
2 0 0 853 0
3 0 233 0 0 027 0 0 0 0 0
4 0 0 0 0 0.79 0 023 0
5 0 012 0 0 053 0 o021 0
6 0 480 0 356 0 3.09
7 0 189 0 0.76 0 033
8 0 350 0 093 0 0 0 0.39 0 032
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
Total 3191 1264 853 525 159 342 044 039 0 032
Table 6. Another Nonoptimal Allocation
Stratum T, M, my, Iteration Ny /Ty
4 5
1 85000 9 1 9 9  0.0001
2 19000 10 1 20.65 10  0.0005
3 9700 11 7 7 7  0.0007
4 6700 7 1 728 7 0.0010
5 3900 4 2 2 2 0.0005
6 2500 19 6 6 6  0.0024
7 2300 8 3 3 3 0.0013
8 5200 10 6 6 6 0.0012
9 8800 15 4 4 4 0.0005
10 6500 20 1 707 18  0.0028
Total 149600 113 32 72 72




